Catalog Number:
45604
Specimen Count:
1
Collector:
S. Sorensen
Precise Locality:

Kilauea Volcano

Locality:
US-Hawaii
Collecting Locality:
North America, United States, Hawaii, Hawaii County, Hawaiian Islands, Hawaiian Windward Islands, Hawaii
Cabinet:
25
Drawer/Shelf:
06

Earth's crust, or outermost rocky layer, sits on top of a deeper layer called the mantle, which stores heat from two sources: the formation of the Earth 4.65 billion years ago and the radioactive decay of uranium, thorium, and potassium. When cracks between huge crustal plates open up, the gap causes the underlying mantle to rise up. The upwelling partially melts that region of the mantle; scientists call that decompression melting. The molten rock, or magma, is less dense than solid rock, so it moves upward, the way a cork bobs to the surface of water. As the magma reaches the upper layers of the crust or even Earth's surface, it cools and hardens into a solid known as igneous rock. Scientists categorize igneous rocks according to their chemical composition, the method of their formation, and their degree of crystallization.

When molten rock (magma) reaches Earth's surface, it solidifies or hardens. Scientists call the resulting solid rocks "extrusive" igneous rocks. Extrusion is the process of pushing material out to the surface of the Earth's crust. At some volcanoes, the extrusive rock flows as lava across the ground before it hardens; the ripples in the lava may freeze in place. Hot, rapidly expanding gases within other volcanoes' vents can force the magma out explosively, forming pumice: low-density rock full of vesicles, or frozen bubbles. Extrusive igneous rocks are easy to find near many volcanoes, such as Mount St. Helens in Washington state. Hawai`i Volcanoes National Park, home of two active volcanoes, contains lava flows that cooled only a few decades, or minutes, ago.