Sedimentary Rock Dendrites

Associated Smithsonian Expert: Jeffrey E. Post, Ph.D.

Jeffrey Post

Photograph by Cara Santelli, Smithsonian Institution

Dr. Jeffrey Post is the curator of the National Gem and Mineral Collection at the Smithsonian National Museum of Natural History. As far back as he can remember in childhood, Post collected rocks and fossils around his home near Madison, Wis. The symmetry of mineral crystals fascinated him, and experiments with a large chemistry set helped develop his interest in science. He earned a Ph.D. from Arizona State University in 1981 and joined the Smithsonian in 1984. Post’s research projects include the physical and chemical properties of fine-grained, environmentally significant minerals such as clays, manganese oxides, and iron oxides. He also uses powerful X-ray beams at the National Synchrotron Light Source at Brookhaven National Laboratory (Upton, N.Y.) to study the crystal structures of these minerals. With his Smithsonian colleagues, Post is always seeking new gem and mineral acquisitions for the Smithsonian. He analyzes specimens to resolve curatorial questions, oversees loans of Smithsonian gems to other museums, supervises the team that is building the collection website, meets with donors, and answers public inquiries about the Smithsonian mineral collection.

Meet our associated expert

This image was obtained from the Smithsonian Institution. The image or its contents may be protected by international copyright laws.
MORE IMAGES
MAKE FIELD
BOOK COVER

Make Field Book Cover

Image of Sedimentary Rock Dendrites

Create your own field book and fill it with images and object from Q?rius! When you create a field book, you can put this image on its cover.

or Sign up
0
ADD COMMENTS

EXPLORE more

TAGS

COMMENTS

Add a comment

Be the first to leave a comment!

Michael Wise investigates granite and pegmatite dikes that intruded into metasedimentary rocks near Mount Antero, Colorado.
Courtesy of Jennifer C. Kelly

About Sedimentary Rocks

Sandstone: Sandstone, a type of sedimentary rock, looks like sand frozen in place. When quartz, feldspar, and other silica-containing minerals and rocks break into fragments between 0.1 and 2 mm (0.004 to 0.08 inches) across, scientists call the pieces sand. In deserts, on beaches, and under bodies of water, layers of sand grains build up over thousands or millions of years, until the accumulated pressure from the weight of those layers compact the sand grains into solid rock, a process called lithification. The sand grains are commonly cemented together by fine-grained quartz and calcite. Sandstone makes up 10 to 20 percent of all sedimentary rocks on Earth because its ingredients are among the most widespread minerals. They are found worldwide and form under a wide range of depositional environments and conditions. Detailed examination of the mineral grains and rock fragments in sandstones is necessary to help geologists interpret the source rock and the environment in which the sandstone was deposited. For example, coarser sand grains in the rock could indicate that blowing wind or running water removed the smallest, finest granules before lithification took place.

Foliated mica (variety: muscovite) with an embedded hexagonal crystal of quartz
Photo courtesy of iRocks.com/The Arkenstone

Crystal Shapes and Crystal Habits

Inside a mineral, atoms arrange themselves into a specific, repeating pattern called a crystal lattice or crystal structure. The smallest three-dimensional arrangement within the lattice is called a "unit cell," which is duplicated over and over again symmetrically. At the level of the everyday world, minerals that are growing without outside interference tend to form crystals that resemble their underlying crystal structures. Scientists call that kind of general, typical appearance a "crystal habit." Of course, conditions that existed during a mineral's formation or crystal growth may change its habit, but geologists still find this attribute to be a useful tool for identifying minerals. Scientists use more than three dozen adjectives to describe crystal habits. For example, natrolite and rutile can be acicular, or needlelike; quartz often forms hexagonal prisms; pyrite and halite typically crystallize as cubes; and mica is foliated or lamellar (layered).